

LEAP SAMPLE TEST PAPER (X STD)

Time: 1 hrs.	Maximum Marks : 120
Name :	_Roll No. :

NOTE: 1. There a

- There are 4 Sections (1) Physics 7 Q. (2) Chemistry 7 Q. (3) Mathematics 8 Q. (4) Biology 8 Q
- 2. Each section consists of MCQ with 4 options out of which only one option is correct.
- 3. There is negative marking scheme for (4R-1W) means that for correct answer 4 marks will be awarded & for wrong answer 1 mark will be deducted.
- **4.** No mark will be awarded or deducted for unanswered question.

PHYSICS

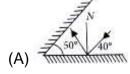
NOTE: There are 7 questions in this part.

 $7 \times 4 = 28$ Marks (4R – 1W)

CHOOSE THE CORRECT OPTION:

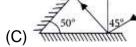
- Q.1) Two heater wires of equal length are connected first in series and then in parallel. The ratio of heat generated from parallel to series connection will be
 - (A) 4:1
- (B) 1:4
- (C) 1:2
- (D) 2:1
- Q.2) A wooden block of mass "C" at rest is stuck by a fast moving bullet at velocity "B" and mass "A", neglecting the frictional force and loss in mass calculate the velocity of the system.
 - (A) $\frac{AB}{A+C}$
- (B) $\frac{A+C}{B+C}$
- $(C)\frac{AC}{B+C}$
- (D) $\frac{A+B}{AC}$

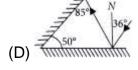
Q.3) Number of kilowatt-hours


volt * Ampere * _____

(A) Time in seconds

(B) Time in minutes


(C) Time in hours

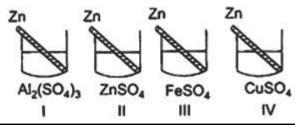

- (D) Time in days
- Q.4) Which of the following correctly depicts reflection. When two mirrors are inclined at an angle of 50°?

- Q.5) Water heater 1 can warm the given amount of water till boiling point in 10 min, heater 2 can do the same to same amount of water in 15 min both working at same voltage, calculate the time taken by the combination of heater 1 and heater 2 connected in parallel to each other to boil same amount of water at same voltage as before.
 - (A) 10 min
- (B) 7 min
- (C) 6 min
- (D) 15 min
- Q.6) Ram weighed a hollow spherical ball and found it to be 25 gm in air, when he tried to weigh the same inside water it showed and 15 gm in water. If its material density is 5gm/cc then find the volume of hollow space inside it.
 - (A) 2 cc
- (B) 5 cc
- (C) 15 cc
- (D) 10 cc
- Q.7) Which one of the following bodies is having highest potential energy at a fixed point?
 - (A) A body of mass 2 kg is placed at a height of 6 m
 - (B) A body of mass 3 kg is placed at a height of 5 m
 - (C) A body of mass 4 kg is placed at a height of 4 m
 - (D) A body of mass 5 kg is placed at a height of 3 m

NOTE: There are 7 questions in this part.

 $7 \times 4 = 28 \text{ Marks } (4R - 1W)$

CHOOSE THE CORRECT OPTION:


- Q.8) Solid calcium oxide reacts vigorously with water to form calcium hydroxide accompanied by liberation of heat. This process is called slaking of lime. Calcium hydroxide dissolves in water to form its solution called lime water. Which among the following is (are) true about slaking of lime and the solution formed?
 - (i) It is an endothermic reaction.
 - (ii) It is an exothermic reaction.
 - (iii) The pH of the resulting solution will be more than seven.
 - (iv) The pH of the resulting solution will be less than seven.
 - (A) (i) and (ii)
- (B) (ii) and (iii)
- (C) (i) and (iv)
- (D) (iii) and (iv)
- **Q.9)** Electrolysis of water is a decomposition reaction. The mole ratio of hydrogen and oxygen gases liberated during electrolysis of water respectively is:
 - (A) 1:1
- (B) 2:1

- (C) 4:1
- (D) 1:2

Q.10) Four students P, Q, R and S noted the initial colour of the solutions kept in beakers I, II, III and IV. After inserting zinc rods in each solution and leaving them undisturbed for two hours, the colour of each solution was again noted in the form of table given below:

Student	Colour of the	I	П	III	IV
	solution				
Р	Initial	Colour- less	Colour- less	Light green	Blue
	Final	Colour- less	Colour- less	Colour- less	Colour- less
Q	Initial	Colour- less	Light yellow	Light green	Blue
	Final	Colour- less	Colour- less	Light green	Colour- less
R	Initial	Colour- less	Colour- less	Light green	Blue
	Final	Light blue	Colour- less	Colour- less	Light blue
S	Initial	Light green	Colour- less	Light green	Blue
	Final	Colour- less	Colour- less	Dark green	Colour- less

Which student noted the colour change in all the four beakers correctly?

- (A) P
- (B) Q

(C) R

(D) S

Q.11) Fe₂O₃(s) + 2 Al (s)
$$\rightarrow$$
 2Fe (s) + Al₂O₃ (s)

The reaction is interpreted as

- (A) Fe_2O_3 is getting oxidised and AI is getting reduced
- (B) Fe₂O₃ is getting reduced and AI is getting oxidized
- (C) Only Fe₂O₃ is oxidized
- (D) 6 Only Al is oxidised
- Q.12) A student used a carbon pencil to write his homework. The mass of this was found to be 5 mg. With the help of this calculate the number of moles of carbon in his homework writing.
 - (A) 4.16×10^{-4}
- (B) 6.022×10^{23}
- (C) 22.4×10^{20}
- (D) 22.4×10^{23}
- Q.13) Which of the following has maximum number of molecules?
 - (A) $7gN_2$
- (B) 2gH₂
- (C) 8gO₂
- (D) 20gNO₂

Q.14) Position of five elements P, Q, R, S and T is shown on the simplified form of the periodic table.

1								18
	2		13	14	15	16	17	7
							R	
Р								
Q		-3 to 12 -					S	

The element which has maximum tendency to lose electron, the element which has maximum tendency to gain electrons and the element which has no tendency to gain or lose electrons are respectively?

- (A) P, R and S
- (B) S, R and T
- (C) Q, S and P
- (D) Q, R and T.

MATHEMATICS

NOTE: There are 8 questions in this part.

 $8 \times 4 = 32 \text{ Marks } (4R - 1W)$

Q.15) Let, $\alpha \neq \beta, \alpha^2 + 3 = 5\alpha$ and $\beta^2 = 5\beta - 3$. The quadratic equation whose roots one $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$

Q.16) Let x be the greatest number by which if we divide 366, 513 and 324, then in each case the

(C) 5

(B) $3x^2 + 19x + 3 = 0$

(D) $3x^2 - 3x + 1 = 0$

CHOOSE THE CORRECT OPTION:

(A) $3x^2 - 19x + 3 = 0$

(C) $3x^2 - 19x - 3 = 0$

remainder is the same. The sum of digits of x is

(B) 4

will be

(A) 3

(2.17)	If we divid	le a two	digit number by	y the sum	of its digit	ts we ge	et 4 as quotient	and 3 as
		remainder	. Now if v	ve divide that tw	vo digit num	nber by th	e produc	ct of its digits, we	get 3 as
		quotient ar	nd 5 as re	mainder the two	digit numb	er is			
		(A) even		(B) odd prime		odd comp		(D) none of the	se
(Q.18)	Statement	t l: If √5-	$+\sqrt{24} = \sqrt{x} + \sqrt{y}$	then $x+y$	y = 5 and	xy = 24.		
		Statemen	t II: The s	quare root of (5	$-\sqrt{24}$) is ($\sqrt{3}-\sqrt{2}$)			
		(A) Both st	tatement l	and II are wron	g.				
		(B) Statem	ent I is w	rong, but statem	nent II is righ	nt			
		(C) Both s	tatement	I and II are right					
		` '		ght, but stateme	_	_			
(2.19)	The ratio of	of the root	of the equation	$ax^2 + bx +$	c = 0 is s	ame as t	the ratio of the ro	ots of the
		equation	px ² + qx -	$+r=0$. If D_1 a	and D_2 are	e the dis	criminate	e of $ax^2 + bx + c$	=0 and
		$px^2 + qx +$	c=0 rep	resent it then D	1: <i>D</i> ₂ =				
		a^2		(B) $\frac{b^2}{a^2}$	(C)	c^2		(D) None of the	20
		$(A) \overline{p^2}$		(B) $\overline{q^2}$	(0)	$\overline{r^2}$		(D) None of thes	, c
(Q.20)	A boat is	being rov	wed away from	a cliff 150	m high. A	at the to	p of the cliff the	angle of
		depression	of the bo	oat changes fron	n 60° to 45°	in 2 minu	tes. The	speed of the boa	t is
		(A) 2 km/h		(B) 1.9 km/h	(C)	2.4 km/h		(D) 3 km/h	
(Q.21)	Two vertice	es of a tria	angle are (–1, 4)) and (5, 2)	if the cent	roid is (0	, -3), find the thir	d vertex.
				(B) (4, 15)	(C)	(-1, -4)		(D) (-4, -15)	
(Q.22)	In a trian	gle <i>PQR</i>	A , $\angle R = \pi/2$. If	$\tan \left(\frac{P}{2}\right)$	and tan	$\left(\frac{Q}{2}\right)$ a	re the roots of	equation
		$ax^2 + bx +$	c = 0 (a ≠	0), then					
		(A) $a+b=$	= C	(B) $b+c=a$	(C)	a+c=b		(D) $b=c$	

BIOLOGY

NOTE: There are 8 questions in this part.

 $8 \times 4 = 32 \text{ Marks } (4R - 1W)$

CHOOSE THE CORRECT OPTION:

- Q.23) Which of the following bacteria used for production of fuels?
 - (A) Bacillus amyloliquefaciens
 - (B) Escherichia coli
 - (C) Zymomonas mobilis
 - (D) Both (B) and (C)
- Q.24) Phycology is the study of
 - (A) Algae
- (B) Fern
- (C) Fungi
- (D) bryophytes

Q.25) Match the following

A.	Cyclostomes	1.	Hemichordata
B.	Aves	2.	Urochordata
C.	Tunicates	3.	Agnatha
D.	Balanoglossus	4.	Pisces
E.	Osteichythyes	5.	Tetrapod

(A) A-1 B-2 C-3 D-4 E-5

(B) A-2 B-3 C-4 D-1 E-5

(C) A-3 B-5 C-2 D-1 E-4

(D) A-3 B-1 C-5 D-2 E-4

- Q.26) Cartilage is formed by
 - (A) Chondrocytes (B) Osteoblasts
- (C) Peritoneum
- (D) Periosteum

- Q.27) The basic postulates of the cell theory are
 - (i) All living organisms consists of one or more cells.
 - The cell is the basic unit of structure and function of all living organisms. (ii)
 - (iii) All cells arise from pre-existing cells.

These were proposed by

- (A) Schleiden, Schwann and Virchow
- (B) Antonie von Leeuwenhoek
- (C) Darwin and Mendel
- (D) Schleiden, Schwann and Hooke

			70	
	(A) 6.5	(B) 8	(C) 7	(D) 9.5
Q.30)	In human pH of sali	va is		
	(A) Water	(B) Chlorophyll	(C) Light	(D) Carbon dioxide
Q.29)	The factor which is	not limiting in normal co	onditions for photosynth	esis is
	(A) Glutenin	(B) Glycogen	(C) Zymase	(D) Albumin
Q.28)				

LEAP SAMPLE ANSWER KEY (X STD)

1	Α	16	Α
2	Α	17	В
3	С	18	В
4	Α	19	В
5	С	20	В
6	В	21	D
7	С	22	A
8	В	23	D
9	В	24	Α
10	A	25	С
11	В	26	Α
12	Α	27	Α
13	В	28	Α
14	D	29	В
15	Α	30	Α

